Ultrahigh-pressure polyamorphism in GeO2 glass with coordination number >6.

نویسندگان

  • Yoshio Kono
  • Curtis Kenney-Benson
  • Daijo Ikuta
  • Yuki Shibazaki
  • Yanbin Wang
  • Guoyin Shen
چکیده

Knowledge of pressure-induced structural changes in glasses is important in various scientific fields as well as in engineering and industry. However, polyamorphism in glasses under high pressure remains poorly understood because of experimental challenges. Here we report new experimental findings of ultrahigh-pressure polyamorphism in GeO2 glass, investigated using a newly developed double-stage large-volume cell. The Ge-O coordination number (CN) is found to remain constant at ∼6 between 22.6 and 37.9 GPa. At higher pressures, CN begins to increase rapidly and reaches 7.4 at 91.7 GPa. This transformation begins when the oxygen-packing fraction in GeO2 glass is close to the maximal dense-packing state (the Kepler conjecture = ∼0.74), which provides new insights into structural changes in network-forming glasses and liquids with CN higher than 6 at ultrahigh-pressure conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X-ray absorption spectroscopy of GeO2 glass to 64 GPa.

The structural behavior of GeO2 glass has been investigated up to 64 GPa using results from x-ray absorption spectroscopy in a diamond anvil cell combined with previously reported density measurements. The difference between the nearest Ge-O distances of glassy and rutile-type GeO2 disappears at the Ge-O distance maximum at 20 GPa, indicating completion of the tetrahedral-octahedral transition ...

متن کامل

Simulation of pressure-induced polyamorphism in a chalcogenide glass GeSe2

The pressure-induced insulator-metal transition in amorphous GeSe2 (a-GeSe2) is studied using an ab initio constant pressure molecular-dynamic simulation. a-GeSe2 transforms gradually to an amorphous metallic state under the application of pressure. The transition is reversible, and is associated with a gradual change from fourfold to sixfold Ge coordination, and from twofold to fourfold Se coo...

متن کامل

Distinct thermal behavior of GeO2 glass in tetrahedral, intermediate, and octahedral forms.

One fascinating high-pressure behavior of tetrahedral glasses and melts is the local coordination change with increasing pressure, which provides a structural basis for understanding numerous anomalies in their high-pressure properties. Because the coordination change is often not retained upon decompression, studies must be conducted in situ. Previous in situ studies have revealed that the sho...

متن کامل

Beyond sixfold coordinated Si in SiO2 glass at ultrahigh pressures.

We investigated the structure of SiO2 glass up to 172 GPa using high-energy X-ray diffraction. The combination of a multichannel collimator with diamond anvil cells enabled the measurement of structural changes in silica glass with total X-ray diffraction to previously unachievable pressures. We show that SiO2 first undergoes a change in Si-O coordination number from fourfold to sixfold between...

متن کامل

Effect of phase change on shock wave attenuation in GeO2

Stress-wave profiles in vitreous GeO2 induced by planar and spherical projectile impact were measured using piezoresistance gauges in the 4 to 18 GPa shock pressure range. The planar experiments demonstrate the response of vitreous GeO2 . This response can be divided into three regimes: ~1! An elastic shock regime with ramp 4 GPa Hugoniot elastic limit ~HEL! precursor. Shock propagation velocit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 13  شماره 

صفحات  -

تاریخ انتشار 2016